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Abstract The conductivity relaxation (CR) method is
often used for measuring the surface transfer rate,Ktr,
and the bulk diffusion coefficient, ~D;for oxygen trans-
port in mixed conducting oxides (MIECs). The time
domain analysis of the obtained CR response is rather
complex and is based on ‘ideal’ behaviour for the dif-
fusion process. It is quite favourable to perform the data
analysis in the frequency domain, where ‘non-ideal’ re-
sponses are easily recognised. Besides, frequency domain
analysis (impedance spectroscopy) can yield reliable
parameter estimates. Using a discrete Fourier-transform
procedure, the time domain responses can be trans-
formed to a frequency domain impedance-type expres-
sion. This approach can be applied to any system for
which a driving force and a resulting flux can be defined.

Keywords Conductivity relaxation Æ Mixed ionic–
electronic conduction Æ Oxygen diffusion Æ Fourier
transform Æ Impedance analysis

Introduction

Mixed (electronic and oxygen ion) conducting oxides
(MIECs) are being considered for potential applications
such as SOFC cathodes and anodes, electrodes for
oxygen pumps and as catalytically active membranes for
membrane reactors. In all these processes three key
parameters are essential for describing the electrochem-
ical transport properties: (i) the electronic conductivity,
(ii) the ionic conductivity or oxygen diffusivity and (iii)

the surface exchange rate of oxygen, i.e. the rate at
which ambient oxygen is transferred to a surface lattice
site and vice versa.

The electronic conductivity is the simplest parameter
to be measured; at least, when the electronic conduc-
tivity is significantly larger than the ionic conductivity,
which is generally the case for the materials of interest.
When the ionic conductivity is of the order of the elec-
tronic conductivity, or not more than about a factor 100
smaller, the two can be separated from simple two-
electrode impedance measurements using ionically
blocking electrodes. But one has to be aware of redox
contributions in the electrode interface region, due to ac
voltage-induced valence changes. Jamnik and Maier
have recently presented a thorough analysis of the pos-
sible cases [1].

In cases where the ionic conductivity is significantly
smaller than the electronic conductivity, direct electrical
measurements can no longer be applied. One method to
overcome this is by using an electrochemical cell with a
closed fixed volume in which the MIEC is placed; see e.g.
[2, 3, 4]. Using a special cell geometry it is also possible
to use impedance spectroscopy for determination of the
diffusion and transfer rates [5, 6]. These methods are,
however, restricted in temperature range due to inherent
limitations set forth by the glass seals.

A quite different approach is the 18O-exchange tech-
nique [7]. Using secondary-ionmass spectroscopy (SIMS)
the oxygen isotope diffusion profile is measured. Curve
fitting yields the tracer diffusion coefficient and surface
exchange rate. The method is generally very accurate, but
also very costly and time consuming.An added advantage
of this technique is that the influence of enhanced grain
boundary diffusion can easily be detected [8].

The recently developed conductivity relaxation (CR)
measurement technique [9] lacks the sealing restrictions
and is relatively simple in the experimental setup. The
useful temperature (and pO2) range is mainly restricted
by the response time of the sample. Hence, this method
has become quite popular for the study of the oxygen
transport process in the ferrite- and cobaltate-based
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perovskite ceramics [10, 11, 12, 13, 14, 15] and related
oxides [16, 17, 18, 19, 20].

In this method, the time-dependent change in the
electronic conductivity is measured after a stepwise
change in the ambient oxygen partial pressure. For small
pO2 steps it may be assumed that, through local equi-
librium of the defect mechanisms, the electronic con-
ductivity changes linearly with the oxygen (vacancy)
concentration. Hence, through this indirect method the
oxygen diffusion and surface transfer rate can be ob-
tained. Although the basic transport and transfer
equations [21] and boundary conditions are quite simple,
the time domain solution for the conductivity relaxation
is a rather complex infinite summation of non-analytical
terms. Using carefully selected conditions and restric-
tions the measured responses can be modelled using a
spreadsheet-type program or dedicated software. Cau-
tion, however, must be applied in the interpretation of
the results [22], as will be presented in this contribution.
Using Fourier transformation, the CR response data can
be transferred to the frequency domain resulting in an
impedance-type expression [13]. It will be shown that
frequency domain analysis has a clear advantage over
time domain analysis, as it presents a visual picture of
the limitations of the CR method.

Conductivity relaxation

The transport equations are schematically presented in
Fig. 1. A further derivation can be found in the litera-
ture and the contribution by Bouwmeester et al. in this
issue [23]. For simplicity, we will consider only one-
dimensional diffusion, i.e. the assumption of a thin slab
with the x-dimension (thickness) much smaller than the
other dimensions. Solutions for two-dimensional diffu-
sion (cylindrical or square/rectangular [9]) are available,
but will not be considered here. The relative change in
the oxygen concentration in the MIEC, c�step(x,t), upon a
stepwise change in the oxygen partial pressure is given
by [21]:

�cstep x; tð Þ ¼ cstep x; tð Þ � c0
c1 � c0

¼ 1�
X1

n¼1

2La cos anx=að Þ
a2n þ L2

a þ La
� �

cos anð Þ
exp � t

sn

� �

ð1Þ

with:

sn ¼
a2

~D � a2n
and La ¼

a � Ktr

~D
¼ a

Lc
ð2Þ

The sample thickness is given by 2a, Ktr is the surface
reaction rate and ~D is the chemical diffusion constant.
The equilibrium concentrations at t=0 and for t fi ¥
are presented by c0 and c¥. The ratio ~D=Ktr is known as
the ‘critical length’ parameter, Lc, i.e. the sample thick-
ness for which diffusion and surface transfer both
determine the transport rate. When Lc is much larger
than the half thickness a, the transport rate will be
limited by surface exchange. For Lc values much smaller
than the half sample thickness, diffusion limitation will
dominate. The use of Eq. 1 requires finding the roots of
the well-known expression:

an tan an ¼ La ð3Þ

A simple, fast and accurate method for evaluation of
Eq. 3 has recently been presented by den Otter et al. [24].

It is assumed that, for relatively small steps in the
oxygen partial pressure, the electronic conductivity
changes linearly with the oxygen ion concentration.
Integrating Eq. 1 over the sample thickness yields the
time domain expression for the relative change in the
electronic conductivity, r�step:

�rstep ¼
r tð Þ � r0

r1 � r0
¼ 1�

X1

n¼1
An � exp � t

sn

� �
ð4Þ

r�step evolves from 0 at t=0, to 1 for infinite time. The
pre-exponential terms An are given by:

An ¼
2L2

a

a2n a2n þ L2
a þ La

� � ð5Þ

The magnitude of the Laparameter, as defined in Eq. 3,
is crucial for the determination of both ~D and Ktr from a
single relaxation curve [22]. This is clearly demonstrated
by considering values for La that are much smaller,
or much larger than 1. For La<0.03 Eq. 3 can be
approximated by:

La ¼ a1 tan a1 � a21 ð6Þ

Inserting this in the expression for sn, Eq. 2, results in a
relation independent of ~D:

s1 ¼
a2

~Da21
¼ a

Ktr
ð7Þ

The higher order roots of Eq. 6 can then be expressed as:
Fig. 1 Schematic representation of the oxygen transfer and
diffusion process in a thin slab of thickness 2a
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an ¼
La

np
þ np � np ð8Þ

Hence, the higher order time constants are approxi-
mated by:

sn ¼
a2

~Da2n
� a

Ktr
� La

n2p2
ð9Þ

From Eq. 9 it is obvious that these time constants can be
ignored, as they will appear at much shorter times
thans1, see Fig. 2. The magnitude of An terms will also
decrease rapidly, as can be seen from Fig. 3.

When La is much larger than 1, e.g. La>30, the roots
can be approximated by an � 1=2p 2n� 1ð Þ:Thus, the time
constants can be expressed as:

sn ¼
4a2

~Dp2 2n� 1ð Þ2
ð10Þ

The ratios between pre-exponential terms, An, become
the same as the ratios between the time constants, see
Figs. 2 and 3:

A1 : A2 : A3 : An ¼ s1 : s2 : s3 : sn ¼ 1 :
1

9
:
1

25
:

1

2n� 1ð Þ2

ð11Þ

The first pre-exponential term, A1, is equal to 8/p2, hence
neither the pre-exponential terms nor the time constants
contain information on Ktr. Thus in this regime it is not
possible to determine Ktr from the conductivity relaxa-
tion curve. Figure 4 presents the simulated CR curves
for a fixeds1=100 s and three values of La: 0.03, 1 and
30. The curves with La=0.03 and La=1 are almost
indistinguishable. Furthermore, from these curves it is
not possible to guess in which regime the CR responses
fall. The second-and third-order time constants and the

related amplitudes, Ai, are essential for determining both
~Dand Ktr. Unfortunately these parameters must be
determined from the onset of the CR response curve,
which generally is to some degree distorted by experi-
mental influences. Further down this will be illustrated
by the ‘reactor flush time’ problem.

Frequency domain analysis

The clear advantage of frequency domain analysis (i.e.
impedance spectroscopy) is that the solution of the set of
fundamental equations and boundary conditions gen-
erally has an analytical expression in the Laplace plane.
Replacing the Laplace variable sby jx directly leads to a
frequency-dependent impedance-type expression. It is
easy to show that the impedance, related to the oxygen
flux through the interface and the partial pressure as
driving force, results in the following expression:

Z xð Þ ¼ L DPO2
tð Þf g

L JðtÞjx¼�a

� � ¼ Rtr þ
Z0ffiffiffiffiffiffiffiffiffi
jx~D

p coth a

ffiffiffiffiffiffi
jx
~D

r
ð12Þ

This type of impedance is well known for electrochem-
ical insertion electrodes. Measurements do not have to
be obtained in the frequency domain, which in our case
would require a frequency-adjustable oscillating oxygen
partial pressure. Time domain data can be transformed
to the frequency domain by Fourier transforms:

Z xð Þ ¼ V ðxÞ
J xð Þ

¼
R1
0 V tð Þ � e�jxtdtR1
0 J tð Þ � e�jxtdt

ð13Þ

Here V(t) and J(t) represent the time domain driving
force and flux. The CR measurements do not provide
direct access to the oxygen flux, but a derived quantity
rrel(t) is obtained in Eq. 4. Ten Elshof et al. [13] have

Fig. 2 Relative value of the higher order time constants with
respect to s1 as function of La. For La>30 the ratios become
constant (1/9, 1/25, ...). For La<0.03 the higher order time
constants become negligible

Fig. 3 Relative value of the higher order pre-exponential terms, An/
A1, as function of La. For La>30 these ratios also become constant
(1/9, 1/25, ... cf. Fig. 2). For La<0.03 the higher order terms
decrease rapidly, falling below the experimental noise level
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derived a modified impedance expression using the time
domain CR response. The implicitly assumed step
change in oxygen partial pressure has a simple Fourier

transform, V ðxÞ ¼ DPO2
=jx:The resulting impedance

expression, which only contains the parameters a, ~Dand
Ktr, has the dimension of complex time:

ZCR xð Þ ¼ 1

x2 � rrel xð Þ
¼ a

Ktr
þ affiffiffiffiffiffiffiffiffi

jx~D
p coth a

ffiffiffiffiffiffi
jx
~D

r
ð14Þ

where rrel xð Þ represents the Fourier transform of the
CR response (see below). The right-hand side of Eq. 14
has interesting features, the imaginary part of the low-
frequency tail is equal to the inverse angular frequency,
Zim=1/x. The changeover from the pure capacitive
behaviour to the Warburg-type diffusion (45� slope)
determines the value of a=~D: When this changeover is
not visible, the value of ~D cannot be obtained from the

measurement. On the other hand, if the extrapolation to
high frequencies goes through the origin, then Ktr cannot
be obtained from the measurement. This is clearly
demonstrated in Fig. 5. From left to right the value of
La is changed from La=0.03 (surface limitation) to
La=1 and La=30 (diffusion limitation).

Fourier transform

Although the Fourier transformation (Eq. 13) is a quite
simple expression, the actual transform is complicated
by the discrete set of data and the limited time range.
The integration can be approximated by a summation,
for which several strategies are available [25]. A simple
and fast summation is obtained by linear interpolation,
Xt=at+b, between two successive data points, Xi)1 and
Xi:

�X ðxÞ ¼
XN

i¼1

�
Xi sinxti � Xi�1 sinxti�1

þ a
x
ðcosxti � cosxti�1Þ

	
x�1þ

� j
XN

i¼1

�
Xi cosxti � Xi�1 cosxti�1

� a
x
ðsinxti � sinxti�1Þ

	
x�1 ð15Þ

This method has been employed for the Fourier trans-
formation of the data in Fig. 4 to obtain the impedance
representations in Fig. 5. An important point is the finite
time range of the data. Extrapolation to infinite time is
essential for obtaining a useful Fourier transform. For
the CR data this can be accomplished by modelling the
end region of the data with an exponential function:

Fig. 4 Comparison of conductivity relaxation curves with
s1=100 s (all) and La=0.03, 1 or 30. The curves for La=1 (dots)
and La=30 (continuous line) almost coincide

Fig. 5 The three impedance
diagrams, transformed from
CR simulations for different
values of La, show clearly the
exchange-limited (left) and the
diffusion-limited (right)
regimes. The frequency range is
534 lHz to 0.811 Hz. From the
centre impedance both Ktr and
~D can be obtained
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X tð Þ ¼ X0 þ X1e�t=s ð16Þ

The Fourier transform from tN to t=¥ is then given by:

X ðxÞ




1

tN
¼�X0

x sinxtN þ cosxtN½ �þ

þX1 � e�
tN
s

s�1 cosxtN�x sinxtN
x2þs�2 þ jxcosxtNþs�1 sinxtN

x2þs�2

n o

ð17Þ

This is especially essential when the long time tail has
not yet reached a constant value, otherwise the first part
of Eq. 17 with the X0 term will suffice. This simplified
method has been used to obtain the Fourier transformed
impedance data of Figs. 5, 6 and 8. As an example the
Fourier transform of a real CR response is presented in
Fig. 6. The results for Ktr and ~D; obtained from both the
time and frequency domain analysis, are presented in
Table 1.

Flush time correction

In the CR experiments, it is generally assumed that the
oxygen partial pressure change is instantaneous (step
response). For samples with a slow response, i.e. low
values for Ktr and ~D; this is adequate. One should realise,
however, that changing the oxygen partial pressure in
the volume of the measurement cell takes time. The
simplest way of modelling this oxygen transient is by
assuming CISTR (continuous ideally stirred tank reactor)
conditions, in which case the time dependence of the
partial pressure can be presented by:

pCISTR tð Þ ¼ p1 þ p0 � p1ð Þ � exp � t
sf

� �
ð18Þ

where sf is the time constant of the reactor and depends
on the cell volume, Vcell, gas flow, Ftot., and tempera-
ture, Tcell. When the flow is measured at room temper-
ature (T0) the time constant becomes:

sf ¼
T0

Tcell
� Vcell

Utot.
ð19Þ

Combining the exponential change in the oxygen partial
pressure with the basic transport equations for the
relaxation process [22] leads to the convoluted response
equation:

�rCISTRðtÞ ¼ 1� exp � t
sf

� �

�
X1

n¼1
An

sn

sn � sf
� exp � t

sn

� �
� exp � t

sf

� �� 	

ð20Þ

The actual influence of the flush time problem is pre-
sented in Fig. 7, which has been restricted for clarity to
the first 50 s. Again a basic time constant s1=100 s and

Fig. 6 Fourier transformed data set (open circles). Sample:
La0.7Sr0.3CoO3)d, with thickness 0.5 mm, T=728 �C, pO2 step
17 fi 8 mbar. Closed diamonds: CNLS fit, using the ‘Equivalent
Circuit’ software package. Results are presented in Table 1

Fig. 7 Close-up of the first 50 s of the conductivity relaxation curve
for three values of La (0.03, 1, 30) and for two flush time constants
(sf=1, 10 s) for La=1. The figure clearly shows that the distinction
between La=1, La=30 and La=1 combined with sf=1 s, is
marginal

Table 1 Results of data analysis in the time domain, Eq. <equa-
tioncite>4</equationcite>, and the frequency domain, Eq. <equa-
tioncite>14</equationcite>. Sample La0.7Sr0.3CoO3)d, with
thickness 0.5 mm, T=728 �C, pO2 step: 17 mbar fi 8 mbar. The
error estimate of the CNLS- fit [26] is based on the 67% confidence
interval (1r)

Parameter FT-CNLS 1r-rel. error Time domain Dimension

Rtr=a/Ktr 61.3 (4%) [s]
Ktr 4.1·10)6 (4%) 3.3·10)6 [mÆs)1]
a=

ffiffiffiffi
~D
p

14.7 (2.5%) [s1/2]
~D 2.8·10)10 (4%) 3.2·10)10 [m2Æs)1]
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La=1 is used (mixed limitation). The influence of a flush
time constant of sf=10 s is clearly visible; it shifts the
response curve to the right. The difference between the
undisturbed curve and one with sf=1 s is much less
apparent. If uncorrected, the analysis of the curve with
sf=1 s will result in inaccurate values for ~D and Ktr [26].

Again, a better approach is transformation to the
frequency domain, presenting the response as an
impedance. Transformations for flush times of sf=1 s
and 0.1 s (with s1=100 s and La=1) are presented in
Fig. 8. The large high-frequency distortion (inductive
loop) is only shown partly for the left-hand impedance
graph (sf=1). However, even a small flush time constant
of 0.1 s results in a distinct inductive loop. The Fourier
transformed impedance is a convolution of the original
impedance expression, Eq. 14, and the flush time func-
tion:

Zapp. xð Þ ¼ 1þ jxsfð Þ � ZCR xð Þ ð21Þ

Hence, transformation to the frequency domain presents
a much more visual presentation of the limitations and
complications of the CR experiments.

Conclusions

Fourier transformation of the CR response data pre-
sents clear insight into the limitations of the analysis. It
can also easily provide error estimates for the obtained
parameters, ~Dand Ktr. Moreover, it can clearly indicate
the negative influence of ‘flushing problems’, which are
signified by a high-frequency inductive loop in the
impedance plot. Also other distortions, e.g. due to the
data acquisition system, will become evident in the fre-
quency domain presentation.

The frequency domain analysis can equally well be
applied to measurement of weight changes upon a
stepwise change in the pO2 [27, 28, 29]. In these types of

microbalance setups with relatively large reactor vol-
umes, the flush time could pose a significant problem,
which can be recognized in the frequency domain.

This time domain measurement/frequency domain
analysis can also be applied successfully to extend the
low-frequency limit for impedance measurements down
to the micro-Hertz level [30].
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